7 research outputs found

    Semi-automated quantification of left ventricular volumes and ejection fraction by real-time three-dimensional echocardiography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have shown that real-time three-dimensional (3D) echocardiography (RT3DE) gives more accurate and reproducible left ventricular (LV) volume and ejection fraction (EF) measurements than traditional two-dimensional methods. A new semi-automated tool (4DLVQ) for volume measurements in RT3DE has been developed. We sought to evaluate the accuracy and repeatability of this method compared to a 3D echo standard.</p> <p>Methods</p> <p>LV end-diastolic volumes (EDV), end-systolic volumes (ESV), and EF measured using 4DLVQ were compared with a commercially available semi-automated analysis tool (TomTec 4D LV-Analysis ver. 2.2) in 35 patients. Repeated measurements were performed to investigate inter- and intra-observer variability.</p> <p>Results</p> <p>Average analysis time of the new tool was 141s, significantly shorter than 261s using TomTec (<it>p </it>< 0.001). Bland Altman analysis revealed high agreement of measured EDV, ESV, and EF compared to TomTec (<it>p </it>= <it>NS</it>), with bias and 95% limits of agreement of 2.1 ± 21 ml, -0.88 ± 17 ml, and 1.6 ± 11% for EDV, ESV, and EF respectively. Intra-observer variability of 4DLVQ vs. TomTec was 7.5 ± 6.2 ml vs. 7.7 ± 7.3 ml for EDV, 5.5 ± 5.6 ml vs. 5.0 ± 5.9 ml for ESV, and 3.0 ± 2.7% vs. 2.1 ± 2.0% for EF (<it>p </it>= <it>NS</it>). The inter-observer variability of 4DLVQ vs. TomTec was 9.0 ± 5.9 ml vs. 17 ± 6.3 ml for EDV (<it>p </it>< 0.05), 5.0 ± 3.6 ml vs. 12 ± 7.7 ml for ESV (<it>p </it>< 0.05), and 2.7 ± 2.8% vs. 3.0 ± 2.1% for EF (<it>p </it>= <it>NS</it>).</p> <p>Conclusion</p> <p>In conclusion, the new analysis tool gives rapid and reproducible measurements of LV volumes and EF, with good agreement compared to another RT3DE volume quantification tool.</p

    Real-time 3D Segmentation of the Left Ventricle Using Deformable Subdivision Surfaces

    No full text
    "(c) 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

    Constrained Active Appearance Models for Segmentation of Triplane Echocardiograms

    No full text
    corecore